Fiber Optic Technology Will Drive Next Generation Intelligent Substations

Mort Cohen, MBA <u>RevGen Group</u> <u>Mort.Cohen@RevGenGroup.com</u>

Elements of the Intelligent Substation

• Small numbers of fiber optic cables replace large bundles of copper wire

Why Use Optical Transducers?

Conventional Instrument Transformer

- Proven
- •Heavy and challenging to install at higher voltages
- Subject to open current circuit conditions
- Potential for explosion or leak
- Must convert analog measurement to digital format in intelligent substations

Non-Conventional Optical Transducer

- Unaffected by high voltage, lightning or electromagnetic effects
- Small size conserves substation space and reduces seismic considerations
- •Not subject to open circuit conditions
- Dry signal column eliminates possibility of explosion or leak
- •Compatible with IEC 61850-9.2 digital process bus requirements

Optical Measurement Technologies

Characteristic	Optical Current/ Voltage Sensors	All-Optical Transducers	Electro-Optical (Digital) Transducers
Application	 Current and voltage sensing on LV and MV AC Networks (up to 36 kVAC) Primarily in distribution networks 	 Current and voltage sensing on HVAC and HVDC Networks (100 kV to 550 kV) Primarily in substations 	 Current sensing on HVAC and HVDC Networks (100 kV to 800 kV+) Primarily in substations
Measurement Technology	 Non-conductive Faraday Effect sensors and fiber cable 	 Optical light source illuminates Faraday Effect sensors, photodiode measures intensity and rotation of polarized beam and converts it to analog signal 	 Optical light source illuminates photovoltaic conversion device to generate electrical power Measured current is converted to digital format on the HV line and sent optically to the control room
Typical Current Measurement Performance	 Current range 5- 20,000 AAC +/-2A accuracy (5- 100A) 2% accuracy (100A- 20,000A) 	 <0.2% metering accuracy from 1A to 5000A 	 <0.1% metering accuracy from 1A to 1500A, and <0.2% from 1500A to 5000A
Advantages	 Simple, inexpensive system and installation Non-conductive materials allow installation on cables or copper bars 	 Wide dynamic range for protection, and good measurement accuracy for metering Fully optical solution using one fiber 	 Metering, protection and temperature measurement in one system Electronics optically isolated from HV lines by non-conductive fiber 18-bit digital measurement accuracy
Disadvantages	 Measurement accuracy insufficient for 100 kV and above 	 Precise installation of optical sensor required to avoid environmental or temperature effects 	 Requires power fiber and data fiber

Electro-Optical Transducer System Approach

- Application: Current metering and protection and temperature measurement on HVDC or HVAC line
- Enabling Technology: Optical-to-electrical power conversion; analog signals converted to digital format on HV line and transmitted to control room via fiber optic line (or optionally over a wireless connection)
- Key Benefit: Non-conductive nature of fiber optic power cable isolates the electronics from ground permitting measurement electronics to mount in close proximity to the high voltage line

Source: JDSU Corporation

Enabling Technology: Power by Laser Light

- Single junction AlGaAs or InP semiconductor device converts laser light to electrical power with 40%+ efficiency
- Voltage from each segment of device added in series; delivered electrical current is linearly proportional to input optical power level
- 6-segment device below delivers about 220mW of electrical power
- Same functionality as solar cell, but optimized for maximum efficiency over the wavelength range of the laser source

Power by Light Block Diagram (All-Fiber Solution)

Source: JDSU Corporation

Power by Light Block Diagram (Fiber/Wireless Solution)

US HVDC Electro-Optical Transducer Installation

Arizona

Phoenix

San Diego

Mexicali

490-mile long HVDC transmission line delivers 1600MW to Arizona and California

· Intermountain is using an optically-enabled CT system for power metering and protection of its 490-mile transmission line • Grid is reliably serving nearly four million homes in Arizona and Southern California

Optically-powered Remote Module powers the measurement electronics

Optical CT System converts 3200 Amps of current at 500kVDC to digital data stream for metering and protection

Source: IDSU Corporation

China is Leader in Electro-Optical Transducer Deployments

- Several HVDC ECT systems are operational in China
 - Monitoring HVDC lines carrying 1000MW to 6000MW of power over distances ranging from 500 to 1400 km
 - Several more HVDC ECT projects underway
- HVAC ECT systems being certified and field tested in China at 110kV to 550kV; higher voltages under evaluation

HVDC transmission lines utilizing electro-optical transducers shown in red

Enabling the Intelligent Substation with Fiber Optics

Performance Benefits

- Precise measurement and synchronization
- Better protection against current surges and open circuit conditions
- Enables digital substation process bus per IEC61850-9.2
- Impervious to electromagnetic effects, high voltages, and lightning

Operational Benefits

- Potential to reduce outage minutes
- Potential to allow grid to be run closer to rated capacity
- Accurate time history of events in digital format
- Eliminates potential for transformer leaks or explosion

Improved accuracy, control, response, and safety

Summary

- Fiber optic technology can be a key enabler for the Intelligent Substation
- Moving from analog to digital grid control offers benefits in performance, operation, safety and O&M
- The technology to deploy the electro-optical transducer exists and has been deployed in many HVDC applications worldwide
- China has served as the first proving ground for electro-optical transducers for HVAC applications

Go to RevGen Group Web Site

Email Mort Cohen for information on Intelligent Substations

The RevGen Group assists high technology clients to:

Bring products to market and through life-cycle transitions
Develop strategies based on objective, customized intelligence
Perform technology assessment and validation

Manage due diligence
Fields of expertise:

Solar energy

Smart grid

Wireless communications

PC software, Web 2.0, enterprise networking

Semiconductor equipment and technology

We deliver:

Advice, strategies, models and tools, alternatives

Research, analysis, evaluation, validation

Operational assistance